Topic tracking language model for speech recognition
نویسندگان
چکیده
In a real environment, acoustic and language features often vary depending on the speakers, speaking styles and topic changes. To accommodate these changes, speech recognition approaches that include the incremental tracking of changing environments have attracted attention. This paper proposes a topic tracking language model that can adaptively track changes in topics based on current text information and previously estimated topic models in an on-line manner. The proposed model is applied to language model adaptation in speech recognition. We use the MIT OpenCourseWare corpus and Corpus of Spontaneous Japanese in speech recognition experiments, and show the effectiveness of the proposed method. © 2011 Elsevier Ltd. All rights reserved. Language model; Latent topic model; Topic tracking; On-line algorithm; Speech recognition
منابع مشابه
Text segmentation and topic tracking on broadcast news via a hidden Markov model approach
Continuing progress in the automatic transcription of broadcast speech via speech recognition has raised the possibility of applying information retrieval techniques to the resulting (errorful) text. In this paper we describe a general methodology based on Hidden Markov Models and classical language modeling techniques for automatically inferring story boundaries (segmentation) and for retrievi...
متن کاملFusing eye-gaze and speech recognition for tracking in an automatic reading tutor - a step in the right direction?
In this paper we present a novel approach for automatically tracking the reading progress using a combination of eye-gaze tracking and speech recognition. The two are fused by first generating word probabilities based on eye-gaze information and then using these probabilities to augment the language model probabilities during speech recognition. Experimental results on a small dataset show that...
متن کاملAutomatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading
Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip c...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملDialogue Speech Recognition by Combining Hierarchical Topic Classification and Language Model Switching
An efficient, scalable speech recognition architecture combining topic detection and topic-dependent language modeling is proposed for multi-domain spoken language systems. In the proposed approach, the inferred topic is automatically detected from the user’s utterance, and speech recognition is then performed by applying an appropriate topic-dependent language model. This approach enables user...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Speech & Language
دوره 25 شماره
صفحات -
تاریخ انتشار 2011